Gorden Otomatis

 
Aplikasi Aritmatika
 
1. Tujuan[Back]
  1. Mengetahui pengertian Sensor LDR, Sound Sensor, dan Touch Sensor 
  2. Mengetahui Simulasi rangkaian sensor LDR, Sound Sensor, dan Touch Sensor dengan proteus
2. Alat dan Bahan[Back]
Alat:
 

1. Power Suply



Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

2. Voltmeter DC



Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur. 
 
3. Baterai

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.
4. Motor DC
 


Spesikasi:
 
– Catu daya 7 – 10 VDC
– Torsi 12 kgf.cm @ 7V
– Kecepatan 0,269 sec/60º
– Antarmuka serial multi-drop TTL
– Umpan balik posisi, beban, dll
– Dimensi 32 x 50 x 38 mm³
 
Bahan:
 
1. Transistor BC547

Gambar : Bentuk transistor bc547

Spesifikasi : 
 
- Bahan pembuatan : si
- Kekuatan : NPN
- Maximum Collector Power Dissipation (Pc): 40 W
- Maximum Collector-Base Voltage |Vcb|: 80 V
- Maximum Collector-Emitter Voltage |Vce|: 40 V
- Maximum Emitter-Base Voltage |Veb|: 5 V
- Maximum Collector Current |Ic max|: 3 A
- Max. Operating Junction Temperature (Tj): 150 °C
 
2. Dioda


Gambar : bentuk dioda

Spesifikasi :
 
- Bahan pembuatanya:semikonduktor silikon dan germanium
- Nilai kapasitansi :tergantung tegangan yang diberikan dengan reserve bias
- Tegangan jatuh : berkisaran 0,2-0,3 V

3. Resistor


 
Gambar : Bentuk resistor


 
 
Spesifikasi :
 
Resistor disebut juga dengan tahanan atau hambatan, berfungsi untuk menghambat arus listrik yang melewatinya. Satuan harga resistor adalah Ohm. ( 1 M: (mega ohm) = 1000 K: (kilo ohm) = 106 :  (ohm)). Kebanyakan rangkaian listrik menggunakan penghantar berupa kawat tembaga, karena tembaga adalah bahan penghantar yang baik. Akan tetapi , sejumlah sambungan pada rangkaian listrik memerlukan tahanan listrik yang lebih besar oleh sebab itu perlu menggunakan tahan atau resistor.
 
4. Relay
Gambar : Bentuk relay

 
Konfigurasi :
NO dan NC: output 
pin (+)dan(-):input supply coil
common
 
Spesifikasi :
Tegangan coil: DC 5V
Struktur: Sealed type
Sensitivitas coil: 0.36W
Tahanan coil: 60-70 ohm
Kapasitas contact: 10A/250VAC, 10A/125VAC, 10A/30VDC, 10A/28VDC
Ukuran: 196154155 mm
 

5. OP AMP



Operational Amplifier atau Op-Amp adalah komponen elektronika yang berfungsi sebagai penguat sinyal input baik DC maupun AC

Konfigurasi Pin OP-Amp



Gelombang input dan output op amp


 6. Sensor LDR

LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini.


 

Konfigurasi pin:



Pin 1 : Electrical contact

Pin 2 : Electrical contact

Grafik Respon:



Spesifikasi:



Data Sheet LDR:

 

7. 7 Segment Anoda


Layar tujuh segmen adalah salah satu perangkat layar untuk menampilkan sistem angka desimal yang merupakan alternatif dari layar dot-matrix. Layar tujuh segmen ini sering kali digunakan pada jam digital, meteran elektronik, dan perangkat elektronik lainnya yang menampilkan informasi numerik.

Data Sheet Seven segment:

 
 
8. Full Adder

 

 
9. Sound Sensor 

Spesifikasi :
  • Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  • Condeser yang digunakan memiliki sensitivitas yang tinggi
  • Tegangan kerja antara 3.3V – 5V
  • Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  • Sudah terdapat lubang baut untuk instalasi
  • Sudah terdapat indikator led
Konfigurasi pin:


Grafik:


10. Touch Sensor

Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor).

 
GRAFIK RESPON TOUCH SENSOR

11. Ground
Sistem grounding pada peralatan kelistrikan dan elektronika adalah untuk memberikan perlindungan pada seluruh sistem.

 
3. Dasar Teori[Back]
 

1.Resistor


 

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.







Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n).

5. Gelang terakhir merupakan nilai toleransi dari resistor



2. Diode


Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan



Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

3. Transistor


Transistor NPN



Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.


Transistor PNP



Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)



 4. IC OP-AMP

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai sinyal booster, dengan beberapa konfigurasi. Op-Amp ideal memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

 Penguat pembalik

Amplifier tak membalik


pembanding


penambah
Rangkaian dasar Opamp


Op-Amp memiliki beberapa karakteristik, di antaranya:

sebuah. Penguat tegangan tak berhingga (AV  = )

b. Masukan impedansi tak berhingga (rin  = )

c. Impedansi keluaran nol (ro = 0) d. Bandwidth tak berhingga (BW  = )

d. koneksi offset nol pada tegangan input (Eo = 0 untuk Ein = 0)




5. Sensor LDR


LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenainya. LDR juga dapat digunakan sebagai sensor cahaya. Nilai resistansi dari LDR bergantung pada intensitas cahaya. Semakin tinggi intensitas cahaya (siang hari) yang mengenainya, maka semakin kecil nilai resistansinya. Sebaliknya semakin rendah

intensitas cahaya (malam hari) yang mengenainya, maka semakin besar nilai resistansinya.

Secara umum, sensor LDR memiliki nilai hambatan 200 Kilo Ohm saat intensitas cahaya rendah (malam hari) dan akan menurun menjadi 500 Ohm saat intensitas cahaya tinggi (siang hari).Umumnya sensor LDR digunakan pada rangkaian lampu otomatis pada rumah, taman, dan jalan raya.

Karakteristik sensor LDR

-Laju Recovery

Laju recovery merupakan suatu ukuran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K/detik, untuk LDR tipe arus harganya lebih besar dari 200K/detik(selama 20 menit pertama mulai dari level cahaya 100 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 10 ms untuk mencapai resistansi yang sesuai den-gan level cahaya 400 lux.

-Respon Spektral

Sensor Cahaya LDR (Light Dependent Resistor) tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digunakan sebagai penghantar arus listrik yaitu tembaga, aluminium, baja, emas dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak, digunakan karena mempunyai daya hantaryang baik.

Kurva antara intensitas cahaya dan resistansi:


 

karakteristrik umum dari sensor cahaya LDR adalah sebagai berikut :

1.    Tegangan maksimum (DC): 150V

2.     Konsumsi arus maksimum: 100mW

3.    Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ

4.    Puncak spektral: 540nm (ukuran gelombang cahaya)

5.    Waktu Respon Sensor : 20ms – 30ms

6.    Suhu operasi: -30° Celsius – 70° Celcius

6. Relay


 

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

7. Motor DC


 

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

                                         



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

8. Sound Sensor 


Gambar : Bentuk sound sensor


Konfigurasi pin:
pin 1: sebagai pin tester yang meletakan logicstate 
pin 2:Vcc : sebagai input dari tegangan untuk sensor
pin 3: Vout : sebagai keluar dari tegangan atau input 
pim 4: GND


Spesifikasi:
1.    Voltage: 5V
2.    LED menyala menunjukkan sinyal keluaran.
3.    Tingkat output TTL.
4.    Keluaran Analog, dapat dihubungkan ke pin Analog dari mikrokontroller (ADC).
5.    Dilengkapi dioda perlindungan (untuk mencegah kekuasaan karena terbalik power suply)
6.    Bila suara mencapai batas yang ditetapkan oleh keluaran potensiometer rendah, on-board lampu LED.
7.    Tingkat output arus hingga 100mA, bisa langsung mendrive relay, buzzer, kipas angin kecil, dll
8.    Board dilengkapi dengan lubang sebesar 3mm dua buah untuk memudahkan instalasi sistem.

  
 
9. Touch sensor
Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). 

GRAFIK RESPON TOUCH SENSOR
 
10.  Full adder

 
Aritmatika adalah ilmu hitung dasar yang merupakan bagian dari matematika. Operasi dasar aritmatika adalah penjumlahan, pengurangan, perkalian dan pembagian, Walaupun operasi-operasi lain yang lebih canggih (seperti persentase, akar kuadrat, pemangkatan, dan logaritma) kadang juga dimasukkan ke dalam kategori ini. Perhitungan dalam aritmatika dilakukan menurut suatu urutan operasi yang menentukan operasi aritmatika yang mana lebih dulu dilakukan.
4. Percobaan[Back]
 

4.1 Prosedur percobaan 

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komonen yang diperlukan di library proteus

4. pasang sensor LDR, touch sensor, sound sensor, Full adder 7482, decoder, relay, motor dc, logic state, lampu dan power suply sesuai gambar rangkaian dibawah

6. Atur nilai resistor serta logic state

7. Coba dijalankan rangkaian apabila ouput hidup(motor dc,lampu,led) dan seven segment menyala maka rangkaian bisa digunakan.
       
4.2 Rangakaian simulasi  
A. Foto/screenshoot

B. Prinsip kerja

Saat sensor LDR tidak mendeteksi adanya cahaya:

Ketika sensor LDR tidak mendeteksi cahaya pada rangkaian outputnya tertulis sebesar +0.19V lalu diteruskan menuju ke R7 dan tegangan yang masuk juga ke rangkaian op amp non inverting akan diperkuat sebesar 1.2x sehingga output menjadi +0.24V. Lalu output op amp dimasukkan ke kaki A1 IC 7482 yang merupakan Full Adder. Dimana output ic 7482 akan diumpankan ke S1 dan S2(pada S2 diteruskan ke inverter terlebih dahulu), selanjutnya masing-masing output tadi akan menjadi input kaki gerbang NOR, sehingga keluaran akan menjadi LOW yang kemudian diteruskan ke resistor R3 10k tidak cukup untuk mengaktifkan tegangan basis transistor Q2 yaitu +0.00 V. Karena transistor Q2 tidak aktif maka tidak ada arus yang akan mengalir dari supply menuju relay RL2 lalu terus ke kaki collector Q2 lalu ke kaki emitor Q2 lalu ke ground. Sehingga menyebabkan switch relay tidak pindah dari kanan ke kiri (on) sehingga tidak terhubung dengan baterai, menyebabkan motor tidak bergerak dan gorden tidak terbuka.

Saat sensor LDR mendeteksi adanya cahaya:

Arus mengalir dari battery menuju ke sensor LDR dan terukur tegangan output sensor sebesar +11.7 V. Arus juga menuju ke R7 dan akan masuk juga ke rangkaian op amp non inverting yang mana terjadi penguatan sebesar 1.2x dengan rumus 1+ R8/R9= 1 + 0.2, sehingga tegangan outputnya menjadi +10.6 V. Lalu output op amp dimasukkan ke kaki A1 IC 7482 yang merupakan Full Adder. Dimana output ic 7482 akan diumpankan ke S1 dan S2(pada S2 diteruskan ke inverter terlebih dahulu), selanjutnya masing-masing output tadi akan menjadi input kaki gerbang NOR, sehingga keluaran akan menjadi HIGH yang kemudian diteruskan ke resistor R3 10k dimana terukur tegangan +0.82V pada kaki basis sehingga transistor Q2 menjadi aktif. Karena transistor Q2 aktif maka arus akan mengalir dari supply menuju relay RL2 lalu terus ke kaki collector Q2 lalu ke kaki emitor Q2 lalu ke ground. Sehingga menyebabkan switch relay pindah dari kanan ke kiri (on) sehingga terhubung dengan baterai, menyebabkan motor bergerak dan gorden terbuka.

Saat sound sensor tidak mendeteksi adanya tepukan tangan:

Saat sound sensor tidak mendeteksi adanya  (logika 0) maka tidak ada tegangan yang diumpankan dari vcc ke kaki pin out lalu diteruskan ke kaki A2 ic 7482. Dimana outputnya diumpankan ke kaki C2 ic 7482 lalu diteruskan ke resistor R6 10k lalu menyebabkan tegangan pada kaki basis tidak cukup untuk mengaktifkan transistor sehingga tidak ada arus yang mengalir dari suplai ke relay ke kaki kolektor lalu ke emitor lalu ke ground dan switch pada relay tidak berpindah dari kanan ke kiri (off). Sehingga menyebabkan motor tidak bergerak untuk menutup gorden.

Saat sound sensor mendeteksi adanya tepukan tangan:

Saat sound sensor mendeteksi adanya tepukan tangan (logika 1) maka tegangan +5V dari pin Vcc diumpankan ke kaki pin out lalu diteruskan kaki  ke kaki A2 ic 7482. Dimana outputnya diumpankan ke kaki C2 ic 7482 lalu diteruskan ke resistor R6 10k lalu karena tegangan pada kaki basisi +0.82 menyebabkan transistor Q3 aktif. Karena aktif maka arus akan mengalir dari supply menuju ke relay RL3 menuju ke kaki kolektor Q3 lalu ke kaki emitor Q3 lalu ke ground. Sehingga menyebabkan switch relay pindah dari kanan ke kiri (on) sehingga terhubung dengan baterai, menyebabkan motor bergerak untuk menutup gorden.

Saat touch sensor tidak mendeteksi adanya sidik jari:

Saat touch sensor tidak mendeteksi adanya tetesan hujan (logika 0) maka tidak ada tegangan yang diumpankan dari vcc ke kaki pin out lalu diteruskan ke kaki B2 ic 7482. Dimana outputnya diumpankan ke kaki C2 ic 7482 lalu diteruskan ke resistor R6 10k lalu menyebabkan tegangan pada kaki basis tidak cukup untuk mengaktifkan transistor sehingga tidak ada arus yang mengalir dari suplai ke relay ke kaki kolektor lalu ke emitor lalu ke ground dan switch pada relay tidak berpindah dari kanan ke kiri (off). Sehingga menyebabkan motor tidak bergerak untuk menutup gorden.

Saat touch sensor mendeteksi adanya tetesan sidik jari:

Saat touch sensor mendeteksi adanya tetesan hujan (logika 1) maka tegangan +5V dari pin Vcc diumpankan ke kaki pin out lalu diteruskan kaki  ke kaki A2 ic 7482. Dimana outputnya diumpankan ke kaki C2 ic 7482 lalu diteruskan ke resistor R6 10k lalu karena tegangan pada kaki basisi +0.82 menyebabkan transistor Q3 aktif. Karena aktif maka arus akan mengalir dari supply menuju ke relay RL3 menuju ke kaki kolektor Q3 lalu ke kaki emitor Q3 lalu ke ground. Sehingga menyebabkan switch relay pindah dari kanan ke kiri (on) sehingga terhubung dengan baterai, menyebabkan motor bergerak untuk menutup gorden.

 Penjelasan pada IC 7482:

Ketika Sensor LDR aktif dan gorden membuka maka input pada IC 7482 C0=H A1=H A2=L B1=L B2=L sehingga outputnya S1=L S2=H C2=L dimana hal ini sesuai dengan tabel kebenaran baris kedua. Ketika Sound Sensor aktif dan gorden menutup maka input pada IC 7482 C0=H A1=H A2=H B1=L B2=L sehingga outputnya S1=L S2=L C2=H dimana hal ini sesuai dengan tabel kebenaran baris ke enam. Ketika Touch Sensor aktif dan gorden menutup maka input pada IC 7482 C0=H A1=H A2=L B1=L B2=H sehingga outputnya S1=L S2=L C2=H dimana hal ini sesuai dengan tabel kebenaran baris ke sepuluh.


 Tabel sensor aktif:




5. Video[Back]
 

 
6. Link Download[Back]

file html klik disini
file rangkaian klik disini
file video klik disini
file library sound sensor klik disini
file library touch sensor klik disini
datasheet sound sensor klik disini
datasheet LDR sensor klik disini
datasheet touch sensor klik disini
datasheet 7482 klik disini 
datasheet LM358 klik disini 


Tidak ada komentar:

Posting Komentar

  BAHAN PRESENTASI UNTUK MATA KULIAH ELEKTRONIKA   2020/2021 OLEH: Muhammad Iqbal 2010951027 Dosen Pengampu: Darwison, M.T Referensi: 1. Rob...